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Abstract— Recently there has been growing interest in 
applying object-oriented approach to large-scale programs 
with a view to treating the various complexities within these. 
Software designed using an object-oriented approach can be 
significantly more robust than traditional software. More 
codes can be reused and it can be easier to refine, test, 
maintain and extend the software. Several benefits of this 
approach may also be observed in the area of finite element 
analysis. This paper describes an implementation of object-
oriented programming to the finite element method for 
engineering analysis using C++, and illustrates the 
advantages of this approach.  
 
Index Terms—engineering analysis, finite element method, 
data abstraction techniques, object-oriented programming, 
C++ programming language 
 

I.  INTRODUCTION 

The finite element method (FEM) has been developed 
and applied extensively in various fields of engineering. 
It is a purely computer-oriented numerical tool and 
requires a sizable amount of programming effort. Major 
concerns in the development of FEM systems are placed 
on the computational efficiency of numerical algorithms. 
Therefore, procedure oriented programming techniques 
have been widely used and procedural programming 
languages such as FORTRAN, pascal etc. have been 
strongly supported.  

The procedural approach has been proven effective in 
treating algorithmic complexity. However, such an 
approach does not address design and quality issues of 
the overall program. Software developed using this 
approach have intricate control strategies, internal data 
representation and algorithms. As a result, these codes 
face difficulties in their maintenance and extensions 
along the lines of the rapid advances in computational 
methods, computer software and hardware technology. 
The maintenance of finite element codes includes 
updating computational modules, extending the 
capabilities of the code and improving its performance.  

  Recently there has been growing interest in 
applying object-oriented approaches to large-scale 
programs with a view to treating various complexities 
within these. Some investigations have also been reported 
in the area of FEM [1-13]. It has been demonstrated that 
object-oriented programming can provide strong support 

to desirable features of FEM systems such as reusability, 
extensibility, easy maintenance, etc.  

  Mackerle [14] presents a list of published papers 
dealing with object-oriented programming applied to 
FEM and BEM. In an early paper, Zimmermann et al. [2] 
discussed the concept of object-oriented programming as 
applied to the implementation of the finite element 
method. Huang et al. [4] have proposed a knowledge base 
system in which an object-oriented analysis in the FEM 
domain is carried out by means of introducing entity 
analysis concepts. Archer et al. [5] demonstrated an 
object-oriented architecture for finite element analysis 
based on a flexible and extendible set of objects that 
facilitate finite element modeling and analysis. 
Zimmermann et al. [6] discussed the key features of an 
integrated environment of finite element related 
technique which includes an object-oriented graphic 
interactive environment and object-oriented operators for 
symbolic mathematical derivations. Yu and kumar [7] 
presented an object-oriented framework for implementing 
finite element method and explored ways to exploit the 
commonalities between various types of elements, loads, 
constraints and solvers  so that duplication is reduced and 
software reuse is improved. Mackie [8] described a study 
into the object-oriented implementation of distributed 
finite element analysis on desktop computers using the 
.NET framework. Heng and Mackie [9] proposed the use 
of design patterns to capture best practices in object-
oriented finite element programming. 

While concept of basic classes like node and element 
are normally common in all designs, a series of papers 
and research work have been published on this subject 
depicting changes in the overall design or specific aspects 
in the design. Some of these papers discuss the object-
oriented techniques in the context of specific problems. 
Tabatabai [10] suggested a object-oriented finite element 
environment for reinforcement dimensioning of two- and 
three-dimensional concrete panel structures. Pantale [11] 
presented benefits of using an OOP approach in 
comparison with traditional programming language 
approaches in the analysis of inelastic deformations and 
impact processes. Kromer et al. [12] described an 
approach to the design and implementation of a 
multibody systems analysis code using an object-oriented 
architecture. Franco et al. [13] discussed the aspects of 
the Object Oriented Programming used to develop a 
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Finite Element technique for limit analysis of 
axisymmetrical pressure vessels. 

 In the present investigation, object-oriented techniques 
have been applied in the development of a FEM software 
``FACS'' for analyzing general kinds of engineering 
problems [15,16].  Although ``FACS'' was initially the 
acronym of Finite element Analysis of Composite 
Structures and was developed for finite element analysis 
of laminated composite structures [15], it presently can 
solve a good range of general kinds of structure analysis, 
heat transfer and metal working problems. C++ is used in 
the development of the program which has several 
features to support object-oriented programming and can 
provide high computing efficiency because of its 
compatibility with C.  

II.  OBJECT-ORIENTED PROGRAMMING 

Software applications are complex because they model 
the complexity of the real world. It takes a long time to 
implement a software and a sizable amount of 
programming effort is required. Therefore the primary 
goal when designing applications are easy maintenance, 
modification, reuse and extension. In this way, the 
behavior of the application can be kept appropriate and 
consistent during its life time.  

  Software designed using object-oriented 
programming technology can be significantly more 
robust than traditional software. More codes can be 
reused and it is easier to refine, test, maintain and extend 
the software.  

  The object-oriented approach attempts to 
manage the complexity inherent in real-world problems 
by abstracting out knowledge and encapsulating it within 
objects. Objects are self-contained entities (physical or 
conceptual) composed of both functions and data. That is, 
an object retains certain information and knows how to 
perform certain operations. Such act of grouping both 
information and operations into a single object is referred 
to as encapsulation. Objects which share the same 
behavior are said to belong to the same class. A class is a 
generic specification for any arbitrary number of similar 
objects. Objects that behave in a manner specified by a 
class are called instances of that class. All objects are 
instances of some class.  

One object accesses another object by sending it a 
message. A message consists of the name of an operation 
and any required arguments. When an object receives a 
message, it performs the requested operation by 
executing a method. A method is the step-by-step 
algorithm executed in response to receiving a message 
whose name matches the name of the method. Limiting 
object access to a strictly defined interface such as the 
message-send allows another use of abstraction known as 
polymorphism. Polymorphism is the ability of two or 
more classes of object to respond to the same message, 
each in its own way. 

  Object-oriented programming languages support 
another abstraction mechanism: inheritance. Inheritance 
is the ability of one class to define the behavior and data 
structure of its instances as a superset of the definition of 

another class or classes. A program can often be 
organized as a set of trees or directed acyclic graphs of 
classes. That is, the programmer specifies a number of 
base class, each with its own set of derived classes. 
Virtual functions can often be used to define a set of 
operations for the most general version of a concept (a 
base class). When necessary, the interpretation of these 
operations can be refined for particular special cases 
(derived classes). Inheritance is an essential organization 
mechanism in an object-oriented programming and 
enables efficient and natural reusability of codes.  

Another form of commonality can be expressed 
through templates. A class template is a special type of 
class definition that allows the programmer to generate an 
entire family of related classes, each of which is suited 
for working with a specific kind of data.  

 The above is a very brief introduction to the concept 
of object-oriented programming. A detailed account can 
be found in many literatures, e.g. [17-19]. 

III. C++ PROGRAMMING LANGUAGE 

The C++ language has evolved as the most widely 
used object-oriented programming language. It was 
developed from the C programming language and with 
few exceptions, retains C as a subset. The following list 
summarizes the merits of the C++ language [20]:  

(a) C++ is designed to be a better C. It provides better 
support for the procedural and modular programming 
styles typically used in C. C++ does so without loss of 
generality or efficiency compared with C while remaining 
completely as a superset of C. 

(b) C++ supports data abstraction, the ability to define 
and use new types. It has several features needed to make 
data abstraction effective. These consist of classes, the 
simplest access control mechanism, constructors and 
destructors, operator overloading, user-defined type 
conversions, exception handling and templates.  

(c) C++ provides several facilities needed to support 
object-oriented programming. These consist of a class 
mechanism with inheritance and virtual function call 
mechanism, in addition to the facilities supporting data 
abstraction techniques. 

 
The above list along with several other features of C++ 

makes it very appropriate for object-oriented design of a 
software application.  

IV. OBJECT-ORIENTED DESIGN OF FEM 
SOFTWARE 

The most desirable types of general purpose finite 
element codes are those that are designed for 
comprehension, modification and updating with reduced 
effort. These desirable objectives are most easily met if 
the program is designed using object-oriented techniques. 
The FEM is by its nature a modular numerical tool. 
Object-oriented programming enables full advantage to 
be taken of this modularity. It reduces the scope for bugs 
by encouraging clearer thinking about the program design 
and allowing programs to be substantially altered without 
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the need to change the existing code. Of still greater 
importance is the fact that object-oriented programming 
allows much easier incorporation of new types of 
element, solution techniques and other facilities as they 
become available. 

  While performing an object-oriented design, the 
first task is to identify classes of objects that will model 
the application domain. Fortunately, it is not difficult to 
identify the objects in the FEM domain, because several 
entities such as element types, material properties, nodal 
points, elements, etc. can be extracted from the 
fundamental concepts of FEM. Several solid model 
entities such as points, lines, surfaces, volumes, etc. also 
can be directly identified as objects. However, in the 
FEM domain, there are a large amount of problem-
solving activities which are hard to be directly identified 
as objects. Yet, their use and implementation may differ 
significantly from those in conventional packages. Some 
mathematical variables such as vector, matrix, etc. can 
also be designed as objects so as to hide their 
implementing details and several of these can be 
represented in template form so that they can take 
variable type (integer, real, double, etc.) as an argument. 
Various types of coordinate systems can also be 
identified as objects.   

The remainder of this section briefly describes a kind 
of implementation of the object-oriented techniques in the 
development of present FEM code ``FACS''. Since the 
code consists of several hundreds of classes and class 
templates with multiple virtual inheritances, it is 
obviously difficult to discuss the original implementation 
here owing to the constraint of space. Therefore, only a 
few typical classes are discussed here and the description 
of each of these classes is kept very brief. Data and 
functions of each of these classes are kept to the 
minimum and arguments of the constructors, destructors 
and other member functions of the classes are also 
simplified for the sake of brevity. 

Several basic classes such as ElemType, Material, 
Node, Element, etc. implemented in the present 
framework are traditional classes used for the 
representation of finite elements.  Several specific classes 
are derived from these abstract classes. In most of the 
earlier investigations, these primitive objects directly 
interact with the problem domain. However, it can be 
revealed from the real world concept that in FEM 
domain, some super objects can be identified which are 
either aggregate of same objects or a superset of different 
objects. Therefore, we create an interface between the 
primitive objects and the problem domain by defining 
classes such as ElemTypeGroup, MaterialGroup, 
NodeGroup, ElementGroup, etc., which deal with group 
of same type of objects. 

A.  Dynamic Data Structure 
In a practical FEM application, the size of the different 

data items such as element types, material groups, nodal 
points, elements, etc. are not known before hand. It is, 
therefore, appropriate to organize these objects in a 
dynamic data structure such as a linked list so that they 
may be arbitrarily added, removed, found or operated on. 

In the present code, a LinkedList class template has been 
defined and represented as a generic class which deals 
with lists of different objects: 

 
template<class T> class LinkedList { // LinkedList of Ts 
private: 

T* Head; // pointer to first element in the list 
/* . . . */  

public: 
int count(); // number of items in the list 
T* find(int n); // find an item in the list 
void InsertSort(T* p, int n); // insert an item and   

    // sort the list 
void Delete(int n); // delete an item from the list 
/* . . . */ 

}; 
 

Various functions have been incorporated for the 
proper management of the list. For example, the function 
count() computes the number of objects in the list while 
the function find() locates a particular object in the list. 
The function InsertSort() is used to dynamically create an 
object using the constructor of its class and insert the 
object in the list. The list is arranged in the ascending 
order of the identification numbers (integers) of the 
objects. The function Delete() is used to dispose a 
particular object in the list using the destructor of its 
class. Several other facilities may also be incorporated in 
this class.  

B.  Element Types 
In finite element analysis, different types of one-, two- 

and three-dimensional elements are used for the 
discretization of the continuum. Each element has several 
characteristics such as number of nodes, degrees of 
freedom and shape functions. Given below is the 
definition of an abstract class ElemType which defines 
properties common to a variety of element types: 

 
class ElemType { 
protected: 

int num; // identification number in the list 
int NoNC; // number of nodes in the element 
int NoNodDOF; // number of nodal degrees of freedom 
ElemType* next; // pointer to next element type in the list 
/* . . . */ 

public: 
ElemType(); // constructor 
virtual ~ElemType(); // destructor 
virtual int NoElDOF() = 0; // pure virtual function 
/* . . . */ 

}; 
 
The data of this class include identification number in 

the list, number of nodes, nodal degrees of freedom, etc. 
The class has also a pointer to the next element in the list. 

 The functions such as NoElDOF() are declared to be 
pure virtual indicating that no definition is required for 
these functions in the abstract class and these functions 
can have different versions for different derived classes. 

 Now, several specific element type classes are derived 
from this abstract class. For example, ElemTypeB8 
represents the class defined for eight-noded brick 
element: 

 
class ElemTypeB8 : public ElemType { 
private: 
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int incompat;  // flag for incompatible modes 
/* . . . */ 

public: 
ElemTypeB8();  // constructor 
~ElemTypeB8();  // destructor 
int NoElDOF();  // number of element degrees of  freedom 
/* . . . */ 

}; 
 
This class contains some additional data specific to the 

element type and correct implementation of functions. 
For example, data incompat is used to specify whether 
incompatible modes are to be added to shape functions.  

Another class ElemTypeB8Lay can now be derived 
from ElemTypeB8 for layered version of eight-noded 
brick element. 

A separate class ElemTypeGroup has been defined 
which deals with list of different element types: 

 
class ElemTypeGroup : public LinkedList<ElemType> { 
private: 

/* . . . */ 
public: 

ElemTypeGroup(); // constructor 
~ElemTypeGroup(); // destructor 
ElemType* operator[] (int who); // subscript operator to  
     // reference an element type 
void read(String* items); // read a particular element type 
void write(String* items); // list element type(s) 
/* . . . */ 

}; 
 
This class is derived from LinkedList class and so 

inherits all its operations for the proper management of 
the list. In addition, it has several other functions, e.g. 
reading and writing objects of different element type 
classes, etc. 

C.  Materials  
The constitutive equation relating the stresses to the 

strains depends on the material properties (isotropic, 
orthotropic or anisotropic), material behavior (linear 
elastic, elastic-plastic, viscoplastic, etc.) and 
dimensionality (plane stress, plane strain, axisymmetric 
or three-dimensional). Different material classes may be 
defined to describe different material properties or 
behavior. All these classes are derived from an abstract 
class Material which defines their common behavior: 

 
class Material { 
protected: 

int num; // identification number in the list 
float density; // mass density 
Material* next; // pointer to next material in the list 
/* . . . */ 

public: 
Material(); // constructor 
virtual ~Material(); // destructor 
virtual void Cmat(Matrix<float>& C) = 0; // pure virtual function 
/* . . . */ 

}; 
 
For example, class MaterialOrtho can be defined for 

orthotropic material with nine independent properties: 
 

class MaterialOrtho : public Material { 
private: 

float ex,ey,ez,nuxy,nuyz,nuxz,gxy,gyz,gxz; // nine independent 
    // elastic constants 

/* . . . */ 
public: 

MaterialOrtho (); // constructor 
~MaterialOrtho (); // destructor 
void Cmat(Matrix<float>& C); // calculates constitutive matrix 
/* . . . */ 

}; 
 
Similar to the class ElemTypeGroup, a class 

MaterialGroup is defined and derived from LinkedList 
class to deal with list of objects of different material 
classes.  

D.  Nodes  
In FEM, the boundary and interior of the region are 

subdivided by lines (or surfaces) into a finite number of 
discrete sized subregions or finite elements. A number of 
nodal points are established with the mesh. The nodal 
points are assigned identifying integer numbers beginning 
with unity and ranging to some maximum value. There 
are several data associated with each node and each data 
has several components depending upon the type of the 
element which the node is attached to. These include 
spatial coordinates (location and orientation), degrees of 
freedom (displacements and rotations), velocity 
components, acceleration components, concentrated 
loads, etc. One abstract class Node is defined consisting 
of generic data and member functions. Several 
implementations of nodal point based on the type of 
problems (structural, heat transfer, metal working, etc.) 
are derived from this class. Class Node is represented as 
given below: 

 
class Node { 
protected: 

int num; // identification number in the list 
int NoNodDOF; // number of nodal degrees of freedom 
float x,y,z; // coordinates 
float* DofVal; // degree of freedom values 
Node* next; // pointer to next node in the list 
/* . . . */ 

public: 
Node(); // constructor 
virtual ~Node(); // destructor 
/* . . . */ 

}; 
 
Next, a class NodeGroup is defined which consists of 

several member functions to deal with nodes, such as 
assigning coordinates and degree of freedom values. In 
addition, it inherits from class LinkedList all the 
operations for the management of the list of nodes. 

E.  Elements  
Like nodes, elements are assigned identifying integer 

numbers beginning with unity and ranging to some 
maximum value. Properties required to uniquely define 
an element include: 

Type : a specific element type to which the element 
belongs. 

Material: properties and behavior of the material 
which the element is made of. 

Element connectivity: the list of global node numbers 
that are attached to the element. 

Element sources: loads applied directly to an element. 
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Thus, an element class must be capable of representing 
all of these properties. Using these information, other 
element characteristics such as stiffness matrix, mass 
matrix and load vector can be calculated. 

An abstract class Element given below is defined so 
that several classes characterizing different categories of 
elements can be inherited from it. 

 
class Element { 
protected: 

int num; // identification number in the list 
int type; // element type number 
int mat; // material number 
Element* next; // pointer to next element in the list 
/* . . . */ 

public: 
Element(); // constructor 
virtual ~Element(); // destructor 
virtual void StiffMat(Matrix<float>& EK) = 0; // pure virtual  

// function 
virtual void MassMat(Matrix<float>& M) = 0; // pure virtual  

// function 
/* . . . */ 

}; 
 
Here, the data type and mat are identification numbers 

of element type and material in the lists defined in classes 
ElemTypeGroup and MaterialGroup respectively. The 
class also specifies the calling interface for several 
functions such as StiffMat() and MassMat(). Now, one 
derived class ElementB8 can be defined for eight-noded 
brick element as given below: 

 
class ElementB8 : public Element { 
private: 

int Connect[8]; // element connectivity 
/* . . . */ 

public: 
ElementB8(); // constructor 
~ElementB8(); // destructor 
void SDMat(float r, float s, float t, Matrix<float>& B);  
// computes strain-displacement matrix 
void StiffMat(Matrix<float>& EK); // computes stiffness matrix 
void MassMat(Matrix<float>& M); // computes mass matrix 
/* . . . */ 

}; 
 
The member functions StiffMat() and MassMat() for 

calculating stiffness and mass matrices require certain 
tools such as a numerical integration scheme, in addition 
to the data defined in this class. These tools are embedded 
within these functions in the present implementation 
although they can also be abstracted out as objects. Some 
functions such as calculating shape functions, their partial 
derivatives, strain-displacement matrix, etc. are defined in 
the corresponding element type classes. These data are 
required by the functions StiffMat() and/or MassMat() 
which provide some necessary information to 
corresponding element type object and request it to 
perform these operations. Method to determine load 
vector for element is also implemented in a similar 
manner.  

Now, one ElementGroup class is defined which deals 
with the lists of elements and performs several tasks 
including assembly of element stiffness matrices and load 
vectors, and solution of the system equations: 

 

class ElementGroup : public LinkedList<Element> { 
private: 

/* . . . */ 
public: 

ElementGroup(); // constructor 
~ElementGroup(); // destructor 
Element* operator[] (int who); // subscript operator to  

// reference an element 
void assembly(int loadcase); // assembly of stiffness  

// matrices and load vectors 
void SkySolve(int loadcase); // skyline reduction solution 
void FrontSolve(int loadcase); // frontal solution 
/* . . . */ 

}; 
 
Each of these tasks is decomposed into smaller tasks 

performed by different procedures implemented in this 
class.  

F.  Other Classes  
Several other classes, in addition to those presented 

above, need to be defined in a complete finite element 
library. For example, a group of object classes are defined 
that perform modal generation and results processing.  

Engineering variables such as strains and stresses can 
also be abstracted out. For example, a stress class is 
defined to provide several facilities including 
computation of principal stresses and their orientations, 
von Mises stresses and stress transformations. 

Several utility classes are also defined to manage the 
finite element objects. The object oriented approach has 
facilitated the natural extension of the code in 
implementation of several other features. For example, 
the code consists of some classes which perform 
interpretation of FEM commands written in C language 
syntax. The code also includes several inherent classes 
for text editing facility which can be used for preparing 
command file and also for making reasonably well 
documentation related to the software [16]. 

 
As stated earlier, the above discussion on classes are 

only representative and actual implementation differs 
significantly. For example, in the original implementation 
a class Elem3DStBrick8Lay defining three dimensional 
eight noded structural layered brick element is virtually 
inherited from multiple base classes each having own set 
of base classes, as depicted in Figure 1.  

 
 

Element 

Element3D ElementSt

 
 

Figure 1. An example of inheritance of class Elem3DStBrick8Lay. 

Elem3DBrick8 Elem3DSt ElemStLay 

Elem3DStBrick8 Elem3DStLay 

Elem3DStBrick8Lay 
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V. FEM SOLUTION OF AN ENGINEERING 
PROBLEM USING ‘FACS’  

The present object-oriented FEM code ``FACS'' can be 
used to solve a considerable range of general kinds of 
engineering problems in the fields of structural analysis, 
heat transfer and metal working. It is worthwhile here to 
discuss the different steps and roles of different classes in 
solving an engineering problem. In order to do so, an 
example problem of foreign object impact on laminated 
composite plate is considered which was solved in the 
initial implementation of the code [15,21]. Problem 
description is sketched in Figure 2. The steps required to 
solve the problem using present object-oriented 
implementation are briefly described below. 

   
 

Figure 2. Problem description of transverse impact by a foreign object 
on a rectangular laminated plate. 

A.  Discretization and Pre-Processing of Finite Element 
Model 

The element type is defined to be layered version of 
eight-noded isoparametric brick element. This is done by 
requesting object of ElemTypeGroup class which 
dynamically creates an object of class 
ElemType3DStB8Lay and inserts in the list of element 
types. While the object is created, several characteristics 
of the element such as number of nodes, number of nodal 
degrees of freedom, etc. are also defined. Orthotropic 
material properties are defined by requesting 
MaterialGroup class which creates an object of class 
MaterialOrtho and assign values of the material density, 
elastic constants and strength values either using the 
constructor or member functions of the material class. 
The number of plies and orientation, thickness and 
material property reference number of each ply in the 
laminate are described using separate classes LayerData 
and LayerDataGroup.  

Solid modelling, mesh control and mesh generation are 
performed using appropriate classes such as Keypoint and 
KeypointGroup, Line and LineGroup, Area and 
AreaGroup and Volume and VolumeGroup. While 
meshing, a number of nodal points are established which 
are created once the solid model objects request object of 
class NodeGroup to do so. The coordinates, etc. are 
assigned to each nodal point during the process. Similarly 
elements are defined by object of class ElementGroup 
which creates objects of class Elem3DStBrick8Lay based 
on the element type currently set and arranges them in a 

list. The data input to each element include the element 
type reference number, material reference number and 
element connectivity. Plies within an element are 
automatically defined using the coordinates of its nodal 
points. 

B. Boundary Conditions and Loading 
Degree of freedom constraints are applied either on 

nodes, keypoints, lines or areas using the member 
functions defined in these classes. Concentrated forces 
are specified at either keypoints or nodes. Surface loads 
are specified on lines and areas or on nodes and element 
faces. If loads are specified on the solid model, the node 
and element classes request the solid model objects for 
load data and transform these data to the equivalent nodal 
and element loads using appropriate numerical 
algorithms. For transient dynamic analysis of structures, 
several data such as time-step, number of load steps, etc. 
are defined within the class ElementGroup.  

C. Computation of Element Properties 
Finite element transient dynamic equilibrium equation 

for structural analysis can be derived using Hamilton’s 
variational principle. The equation for the case of no 
damping can be written as  

[ ]{ } [ ]{ } { }M U K U F+ =&& , (1) 

where [ ]M  and [ ]K  are structural mass and stiffness 

matrices, { }U and { }U&&  are the nodal displacement and 

acceleration vectors and { }F  is the applied load vector. 

These can be calculated as [ ] [ ]e
e

M m= ∑ , [ ] [ ]e
e

K k= ∑  

and { } { } { } { }b se e
e e

cF f f= + + F∑ ∑ ,  (2) 

where [ ]ek  is the element stiffness matrix, [ ]em  is the 

element stiffness matrix, { }b e
f  is the element body force 

vector, { }s e
f  is the element traction force vector and 

{ }cF  is the global concentrated force vector. 
The above finite element equation is integrated step-

by-step with respect to time using Newmark direct 
integration method with constant average acceleration 
(α = 0.5 and β  = 0.25). After applying this method, Eqn 
(1) can be evaluated at time  to form [15]: 1nt +

{ } { }1
ˆ

n nK U F+
⎡ ⎤ =⎣ ⎦ 1

ˆ
+    (3) 

Where K̂⎡ ⎤⎣ ⎦  is effective stiffness matrix and { }1n̂F +  is 

the effective load vector defined as,  

[ ]
( )

[ ]2

1K̂ K M
tβ

⎡ ⎤ = +⎣ ⎦ ∆
 and   

{ } { } [ ]
( )

{ } ( ){ } { }1 1 2

1 1 1 2ˆ
2n n n n nF F M U U U

tt
β

β ββ
+ +

⎛ ⎞−⎜ ⎟= + + +
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& && . (4) 

For each element e, the element stiffness matrix [ ]ek  

and mass matrix [ ]em  are calculated by member 
functions StiffMat() and MassMat() defined in class  

c

a 

b 

MASS, m 
NOSE RADIUS, rI 

CONTACT VELOCITY, V0 

X1

X2

X3
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Elem3DStBrick8Lay. This class also consists of functions 
to calculate the effective element stiffness matrix ˆ

e
k⎡ ⎤
⎣ ⎦  

and the effective element load vector . Here 

 contains element surface force vector and 

element body force vector which are computed using 
separate functions implemented in this class or its base 
classes. 

1n̂ e
f +

⎡ ⎤
⎣ ⎦

1n̂ e
f +

⎡ ⎤
⎣ ⎦

D. Assemblage of Elements and Solution of Equilibrium 
Equations 

The effective element stiffness matrices and load 
vectors are assembled to constitute the effective global 
stiffness matrix K̂⎡ ⎤⎣ ⎦  and effective global load vector 

. The function assembly() defined in the class 

ElementGroup gets the stiffness matrix and load vector 
from each element and assembles them in skyline vector 
storage mode. This compacted storage is used by the 
skyline reduction solution method SkySolve() to solve the 
system of equations. Another solution scheme called 
frontal solution method is implemented by function 
FrontSolve(). However, the complete assembly of all 
element contributions is not required in case of frontal 
solution method (FrontSolve()) in which assembly and 
reduction of equations are performed at the same time. 
Solution of the system of equations using any of two 
methods determines the global displacement vector 

 at (n+1)th time-step.  

{ 1n̂F + }

}

} }

{ 1nU +

Since the contact force at the impact point is not 
known at the beginning of each time-step, a Newton-
Raphson iterative method is used to implement a non-
linear contact law in the analysis. The contact force is 
calculated using a function defined within the class 
NodeGroup and its value is assigned to the nodal point at 
the impact point. Once the global displacement vector 

 is known, the velocity vector {  and 

acceleration vector {
{ 1nU + 1nU +

&

}1nU +
&&  are computed within the class 

NodeGroup. This procedure is repeated for each time-
step. 

Results of contact force and centre displacement are 
presented in Figure 2 for a test case of [904/08/904] 
graphite-epoxy square plate of size 100 mm having 
clamped edges and impacted by a steel mass of 200 gm 
traveling at 5 ms-1. 

E. Computation of Stresses and Post-Processing of 
Results 

Once the displacements are known, element strains and 
stresses within each ply in the element are calculated 
using the member functions defined in the 
Elem3DStBrick8Lay class or its base classes. Failure 
criteria for prediction of matrix cracking and 
delamination are implemented in separate functions 
within the class. Result on prediction of impact-induced 
delamination for the above test case, as obtained directly 
by post-processor classes of the code, is plotted in Figure 

3. The result depicts strength ratio, ed (calculated based 
on impact-induced delamination criterion [22]) in the 
bottom 0/90 plies interface of [904/08/904] graphite-epoxy 
laminated square plate of size 100 mm which is having 
clamped edges and impacted by 200 gm mass at a 
velocity of 5 ms-1. The region, where  is greater than 
or equal to unity at the end of the impact, gives the 
estimation of the delamination size [22]. 

de
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Figure 2. Contact force and centre displacement in graphite/epoxy plate 
([904/08/904]) (dimension: a = b = 100 mm), having clamped edges and 
impacted by blunt-ended steel cylinder of nose radius 5 mm and mass 
200 gm having initial velocity of 5 ms-1. 

 

         
 
Figure 3. Maximum strength ratio, ed and predicted delamination size at 
0/90 interface of [904/08/904] graphite-epoxy square plate of size 100 
mm having clamped edges and impacted by 200 gm mass at a velocity 

of 5 ms-1 (  values: A = 0.2, B = 0.5, C = 1.0). de

VI. DISCUSSION AND CONCLUSION 

Finite element application programs are significantly 
large and complex, and therefore, key issues in 
developing these codes are easy testing, maintenance, 
extension and reusability. Object-oriented programming 
can provide stronger support to these desirable features 
than traditional programming. It concentrates on 
modelling the real world aspects of the system.  

In object-oriented design, the approach used is to 
identify and implement a library of finite element data 
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types or classes that corresponds to high-level concepts in 
engineering and mathematics. Each class has well-
defined roles and interfaces and therefore can be 
developed, validated and maintained independently. The 
use of data abstraction promotes the modularity of the 
finite element program and permits efficiency concerns to 
be more easily addressed at the implementation level of 
each class. It also makes complex data structures more 
convenient to use because the complexity is hidden by the 
abstract operators of the class. The concept of inheritance 
enables efficient and natural usability of finite element 
codes. Several new facilities such as new element types, 
materials and solution techniques may be incorporated 
with much reduced effort. The programmer may also be 
able to make use of existing code which may continue to 
run in the new system. 

The present one is a kind of implementation of object-
oriented approach to the design of FEM system. Concepts 
of object-oriented programming and some of the sample 
finite element classes implemented in the present 
software “FACS” have been briefly discussed. C++ was 
used in the development of the program because it has 
several features to support object-oriented programming. 
This language also provides hybrid object-oriented 
environment which allows the programmer to define 
objects, but also contains intrinsic data types that are not 
objects. The paper also discussed the role of different 
classes and their interfaces in solving a practical 
engineering problem using FEM.  

Inspite of a number of advantages of object-oriented 
programming, special care must be taken to preserve the 
computational efficiency of the numerical algorithms. In 
order to do so, a hybrid implementation can be used at 
those places in the code which are computationally 
intensive and are required during the solution phase of the 
analysis. The static member function concept and other 
facilities in C++ such as use of this pointer allow the 
developer to implement a hybrid approach wherever 
required. 

The general conclusion is that use of object-oriented 
programming with C++ is attractive for the development 
of finite element application programs. 
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