
Object-Oriented Finite Element Programming for
Engineering Analysis in C++

Surendra Kumar

CSIR Centre for Mathematical Modelling and Computer Simulation
Council of Scientific and Industrial Research

Bangalore-560037, India.
E-mail: surendra@cmmacs.ernet.in, surend_kr@yahoo.com

Abstract— Recently there has been growing interest in
applying object-oriented approach to large-scale programs
with a view to treating the various complexities within these.
Software designed using an object-oriented approach can be
significantly more robust than traditional software. More
codes can be reused and it can be easier to refine, test,
maintain and extend the software. Several benefits of this
approach may also be observed in the area of finite element
analysis. This paper describes an implementation of object-
oriented programming to the finite element method for
engineering analysis using C++, and illustrates the
advantages of this approach.

Index Terms—engineering analysis, finite element method,
data abstraction techniques, object-oriented programming,
C++ programming language

I. INTRODUCTION

The finite element method (FEM) has been developed
and applied extensively in various fields of engineering.
It is a purely computer-oriented numerical tool and
requires a sizable amount of programming effort. Major
concerns in the development of FEM systems are placed
on the computational efficiency of numerical algorithms.
Therefore, procedure oriented programming techniques
have been widely used and procedural programming
languages such as FORTRAN, pascal etc. have been
strongly supported.

The procedural approach has been proven effective in
treating algorithmic complexity. However, such an
approach does not address design and quality issues of
the overall program. Software developed using this
approach have intricate control strategies, internal data
representation and algorithms. As a result, these codes
face difficulties in their maintenance and extensions
along the lines of the rapid advances in computational
methods, computer software and hardware technology.
The maintenance of finite element codes includes
updating computational modules, extending the
capabilities of the code and improving its performance.

 Recently there has been growing interest in
applying object-oriented approaches to large-scale
programs with a view to treating various complexities
within these. Some investigations have also been reported
in the area of FEM [1-13]. It has been demonstrated that
object-oriented programming can provide strong support

to desirable features of FEM systems such as reusability,
extensibility, easy maintenance, etc.

 Mackerle [14] presents a list of published papers
dealing with object-oriented programming applied to
FEM and BEM. In an early paper, Zimmermann et al. [2]
discussed the concept of object-oriented programming as
applied to the implementation of the finite element
method. Huang et al. [4] have proposed a knowledge base
system in which an object-oriented analysis in the FEM
domain is carried out by means of introducing entity
analysis concepts. Archer et al. [5] demonstrated an
object-oriented architecture for finite element analysis
based on a flexible and extendible set of objects that
facilitate finite element modeling and analysis.
Zimmermann et al. [6] discussed the key features of an
integrated environment of finite element related
technique which includes an object-oriented graphic
interactive environment and object-oriented operators for
symbolic mathematical derivations. Yu and kumar [7]
presented an object-oriented framework for implementing
finite element method and explored ways to exploit the
commonalities between various types of elements, loads,
constraints and solvers so that duplication is reduced and
software reuse is improved. Mackie [8] described a study
into the object-oriented implementation of distributed
finite element analysis on desktop computers using the
.NET framework. Heng and Mackie [9] proposed the use
of design patterns to capture best practices in object-
oriented finite element programming.

While concept of basic classes like node and element
are normally common in all designs, a series of papers
and research work have been published on this subject
depicting changes in the overall design or specific aspects
in the design. Some of these papers discuss the object-
oriented techniques in the context of specific problems.
Tabatabai [10] suggested a object-oriented finite element
environment for reinforcement dimensioning of two- and
three-dimensional concrete panel structures. Pantale [11]
presented benefits of using an OOP approach in
comparison with traditional programming language
approaches in the analysis of inelastic deformations and
impact processes. Kromer et al. [12] described an
approach to the design and implementation of a
multibody systems analysis code using an object-oriented
architecture. Franco et al. [13] discussed the aspects of
the Object Oriented Programming used to develop a

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 689

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.7.689-696

Finite Element technique for limit analysis of
axisymmetrical pressure vessels.

 In the present investigation, object-oriented techniques
have been applied in the development of a FEM software
``FACS'' for analyzing general kinds of engineering
problems [15,16]. Although ``FACS'' was initially the
acronym of Finite element Analysis of Composite
Structures and was developed for finite element analysis
of laminated composite structures [15], it presently can
solve a good range of general kinds of structure analysis,
heat transfer and metal working problems. C++ is used in
the development of the program which has several
features to support object-oriented programming and can
provide high computing efficiency because of its
compatibility with C.

II. OBJECT-ORIENTED PROGRAMMING

Software applications are complex because they model
the complexity of the real world. It takes a long time to
implement a software and a sizable amount of
programming effort is required. Therefore the primary
goal when designing applications are easy maintenance,
modification, reuse and extension. In this way, the
behavior of the application can be kept appropriate and
consistent during its life time.

 Software designed using object-oriented
programming technology can be significantly more
robust than traditional software. More codes can be
reused and it is easier to refine, test, maintain and extend
the software.

 The object-oriented approach attempts to
manage the complexity inherent in real-world problems
by abstracting out knowledge and encapsulating it within
objects. Objects are self-contained entities (physical or
conceptual) composed of both functions and data. That is,
an object retains certain information and knows how to
perform certain operations. Such act of grouping both
information and operations into a single object is referred
to as encapsulation. Objects which share the same
behavior are said to belong to the same class. A class is a
generic specification for any arbitrary number of similar
objects. Objects that behave in a manner specified by a
class are called instances of that class. All objects are
instances of some class.

One object accesses another object by sending it a
message. A message consists of the name of an operation
and any required arguments. When an object receives a
message, it performs the requested operation by
executing a method. A method is the step-by-step
algorithm executed in response to receiving a message
whose name matches the name of the method. Limiting
object access to a strictly defined interface such as the
message-send allows another use of abstraction known as
polymorphism. Polymorphism is the ability of two or
more classes of object to respond to the same message,
each in its own way.

 Object-oriented programming languages support
another abstraction mechanism: inheritance. Inheritance
is the ability of one class to define the behavior and data
structure of its instances as a superset of the definition of

another class or classes. A program can often be
organized as a set of trees or directed acyclic graphs of
classes. That is, the programmer specifies a number of
base class, each with its own set of derived classes.
Virtual functions can often be used to define a set of
operations for the most general version of a concept (a
base class). When necessary, the interpretation of these
operations can be refined for particular special cases
(derived classes). Inheritance is an essential organization
mechanism in an object-oriented programming and
enables efficient and natural reusability of codes.

Another form of commonality can be expressed
through templates. A class template is a special type of
class definition that allows the programmer to generate an
entire family of related classes, each of which is suited
for working with a specific kind of data.

 The above is a very brief introduction to the concept
of object-oriented programming. A detailed account can
be found in many literatures, e.g. [17-19].

III. C++ PROGRAMMING LANGUAGE

The C++ language has evolved as the most widely
used object-oriented programming language. It was
developed from the C programming language and with
few exceptions, retains C as a subset. The following list
summarizes the merits of the C++ language [20]:

(a) C++ is designed to be a better C. It provides better
support for the procedural and modular programming
styles typically used in C. C++ does so without loss of
generality or efficiency compared with C while remaining
completely as a superset of C.

(b) C++ supports data abstraction, the ability to define
and use new types. It has several features needed to make
data abstraction effective. These consist of classes, the
simplest access control mechanism, constructors and
destructors, operator overloading, user-defined type
conversions, exception handling and templates.

(c) C++ provides several facilities needed to support
object-oriented programming. These consist of a class
mechanism with inheritance and virtual function call
mechanism, in addition to the facilities supporting data
abstraction techniques.

The above list along with several other features of C++

makes it very appropriate for object-oriented design of a
software application.

IV. OBJECT-ORIENTED DESIGN OF FEM
SOFTWARE

The most desirable types of general purpose finite
element codes are those that are designed for
comprehension, modification and updating with reduced
effort. These desirable objectives are most easily met if
the program is designed using object-oriented techniques.
The FEM is by its nature a modular numerical tool.
Object-oriented programming enables full advantage to
be taken of this modularity. It reduces the scope for bugs
by encouraging clearer thinking about the program design
and allowing programs to be substantially altered without

690 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

the need to change the existing code. Of still greater
importance is the fact that object-oriented programming
allows much easier incorporation of new types of
element, solution techniques and other facilities as they
become available.

 While performing an object-oriented design, the
first task is to identify classes of objects that will model
the application domain. Fortunately, it is not difficult to
identify the objects in the FEM domain, because several
entities such as element types, material properties, nodal
points, elements, etc. can be extracted from the
fundamental concepts of FEM. Several solid model
entities such as points, lines, surfaces, volumes, etc. also
can be directly identified as objects. However, in the
FEM domain, there are a large amount of problem-
solving activities which are hard to be directly identified
as objects. Yet, their use and implementation may differ
significantly from those in conventional packages. Some
mathematical variables such as vector, matrix, etc. can
also be designed as objects so as to hide their
implementing details and several of these can be
represented in template form so that they can take
variable type (integer, real, double, etc.) as an argument.
Various types of coordinate systems can also be
identified as objects.

The remainder of this section briefly describes a kind
of implementation of the object-oriented techniques in the
development of present FEM code ``FACS''. Since the
code consists of several hundreds of classes and class
templates with multiple virtual inheritances, it is
obviously difficult to discuss the original implementation
here owing to the constraint of space. Therefore, only a
few typical classes are discussed here and the description
of each of these classes is kept very brief. Data and
functions of each of these classes are kept to the
minimum and arguments of the constructors, destructors
and other member functions of the classes are also
simplified for the sake of brevity.

Several basic classes such as ElemType, Material,
Node, Element, etc. implemented in the present
framework are traditional classes used for the
representation of finite elements. Several specific classes
are derived from these abstract classes. In most of the
earlier investigations, these primitive objects directly
interact with the problem domain. However, it can be
revealed from the real world concept that in FEM
domain, some super objects can be identified which are
either aggregate of same objects or a superset of different
objects. Therefore, we create an interface between the
primitive objects and the problem domain by defining
classes such as ElemTypeGroup, MaterialGroup,
NodeGroup, ElementGroup, etc., which deal with group
of same type of objects.

A. Dynamic Data Structure
In a practical FEM application, the size of the different

data items such as element types, material groups, nodal
points, elements, etc. are not known before hand. It is,
therefore, appropriate to organize these objects in a
dynamic data structure such as a linked list so that they
may be arbitrarily added, removed, found or operated on.

In the present code, a LinkedList class template has been
defined and represented as a generic class which deals
with lists of different objects:

template<class T> class LinkedList { // LinkedList of Ts
private:

T* Head; // pointer to first element in the list
/* . . . */

public:
int count(); // number of items in the list
T* find(int n); // find an item in the list
void InsertSort(T* p, int n); // insert an item and

 // sort the list
void Delete(int n); // delete an item from the list
/* . . . */

};

Various functions have been incorporated for the
proper management of the list. For example, the function
count() computes the number of objects in the list while
the function find() locates a particular object in the list.
The function InsertSort() is used to dynamically create an
object using the constructor of its class and insert the
object in the list. The list is arranged in the ascending
order of the identification numbers (integers) of the
objects. The function Delete() is used to dispose a
particular object in the list using the destructor of its
class. Several other facilities may also be incorporated in
this class.

B. Element Types
In finite element analysis, different types of one-, two-

and three-dimensional elements are used for the
discretization of the continuum. Each element has several
characteristics such as number of nodes, degrees of
freedom and shape functions. Given below is the
definition of an abstract class ElemType which defines
properties common to a variety of element types:

class ElemType {
protected:

int num; // identification number in the list
int NoNC; // number of nodes in the element
int NoNodDOF; // number of nodal degrees of freedom
ElemType* next; // pointer to next element type in the list
/* . . . */

public:
ElemType(); // constructor
virtual ~ElemType(); // destructor
virtual int NoElDOF() = 0; // pure virtual function
/* . . . */

};

The data of this class include identification number in

the list, number of nodes, nodal degrees of freedom, etc.
The class has also a pointer to the next element in the list.

 The functions such as NoElDOF() are declared to be
pure virtual indicating that no definition is required for
these functions in the abstract class and these functions
can have different versions for different derived classes.

 Now, several specific element type classes are derived
from this abstract class. For example, ElemTypeB8
represents the class defined for eight-noded brick
element:

class ElemTypeB8 : public ElemType {
private:

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 691

© 2010 ACADEMY PUBLISHER

int incompat; // flag for incompatible modes
/* . . . */

public:
ElemTypeB8(); // constructor
~ElemTypeB8(); // destructor
int NoElDOF(); // number of element degrees of freedom
/* . . . */

};

This class contains some additional data specific to the

element type and correct implementation of functions.
For example, data incompat is used to specify whether
incompatible modes are to be added to shape functions.

Another class ElemTypeB8Lay can now be derived
from ElemTypeB8 for layered version of eight-noded
brick element.

A separate class ElemTypeGroup has been defined
which deals with list of different element types:

class ElemTypeGroup : public LinkedList<ElemType> {
private:

/* . . . */
public:

ElemTypeGroup(); // constructor
~ElemTypeGroup(); // destructor
ElemType* operator[] (int who); // subscript operator to
 // reference an element type
void read(String* items); // read a particular element type
void write(String* items); // list element type(s)
/* . . . */

};

This class is derived from LinkedList class and so

inherits all its operations for the proper management of
the list. In addition, it has several other functions, e.g.
reading and writing objects of different element type
classes, etc.

C. Materials
The constitutive equation relating the stresses to the

strains depends on the material properties (isotropic,
orthotropic or anisotropic), material behavior (linear
elastic, elastic-plastic, viscoplastic, etc.) and
dimensionality (plane stress, plane strain, axisymmetric
or three-dimensional). Different material classes may be
defined to describe different material properties or
behavior. All these classes are derived from an abstract
class Material which defines their common behavior:

class Material {
protected:

int num; // identification number in the list
float density; // mass density
Material* next; // pointer to next material in the list
/* . . . */

public:
Material(); // constructor
virtual ~Material(); // destructor
virtual void Cmat(Matrix<float>& C) = 0; // pure virtual function
/* . . . */

};

For example, class MaterialOrtho can be defined for

orthotropic material with nine independent properties:

class MaterialOrtho : public Material {
private:

float ex,ey,ez,nuxy,nuyz,nuxz,gxy,gyz,gxz; // nine independent
 // elastic constants

/* . . . */
public:

MaterialOrtho (); // constructor
~MaterialOrtho (); // destructor
void Cmat(Matrix<float>& C); // calculates constitutive matrix
/* . . . */

};

Similar to the class ElemTypeGroup, a class

MaterialGroup is defined and derived from LinkedList
class to deal with list of objects of different material
classes.

D. Nodes
In FEM, the boundary and interior of the region are

subdivided by lines (or surfaces) into a finite number of
discrete sized subregions or finite elements. A number of
nodal points are established with the mesh. The nodal
points are assigned identifying integer numbers beginning
with unity and ranging to some maximum value. There
are several data associated with each node and each data
has several components depending upon the type of the
element which the node is attached to. These include
spatial coordinates (location and orientation), degrees of
freedom (displacements and rotations), velocity
components, acceleration components, concentrated
loads, etc. One abstract class Node is defined consisting
of generic data and member functions. Several
implementations of nodal point based on the type of
problems (structural, heat transfer, metal working, etc.)
are derived from this class. Class Node is represented as
given below:

class Node {
protected:

int num; // identification number in the list
int NoNodDOF; // number of nodal degrees of freedom
float x,y,z; // coordinates
float* DofVal; // degree of freedom values
Node* next; // pointer to next node in the list
/* . . . */

public:
Node(); // constructor
virtual ~Node(); // destructor
/* . . . */

};

Next, a class NodeGroup is defined which consists of

several member functions to deal with nodes, such as
assigning coordinates and degree of freedom values. In
addition, it inherits from class LinkedList all the
operations for the management of the list of nodes.

E. Elements
Like nodes, elements are assigned identifying integer

numbers beginning with unity and ranging to some
maximum value. Properties required to uniquely define
an element include:

Type : a specific element type to which the element
belongs.

Material: properties and behavior of the material
which the element is made of.

Element connectivity: the list of global node numbers
that are attached to the element.

Element sources: loads applied directly to an element.

692 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

Thus, an element class must be capable of representing
all of these properties. Using these information, other
element characteristics such as stiffness matrix, mass
matrix and load vector can be calculated.

An abstract class Element given below is defined so
that several classes characterizing different categories of
elements can be inherited from it.

class Element {
protected:

int num; // identification number in the list
int type; // element type number
int mat; // material number
Element* next; // pointer to next element in the list
/* . . . */

public:
Element(); // constructor
virtual ~Element(); // destructor
virtual void StiffMat(Matrix<float>& EK) = 0; // pure virtual

// function
virtual void MassMat(Matrix<float>& M) = 0; // pure virtual

// function
/* . . . */

};

Here, the data type and mat are identification numbers

of element type and material in the lists defined in classes
ElemTypeGroup and MaterialGroup respectively. The
class also specifies the calling interface for several
functions such as StiffMat() and MassMat(). Now, one
derived class ElementB8 can be defined for eight-noded
brick element as given below:

class ElementB8 : public Element {
private:

int Connect[8]; // element connectivity
/* . . . */

public:
ElementB8(); // constructor
~ElementB8(); // destructor
void SDMat(float r, float s, float t, Matrix<float>& B);
// computes strain-displacement matrix
void StiffMat(Matrix<float>& EK); // computes stiffness matrix
void MassMat(Matrix<float>& M); // computes mass matrix
/* . . . */

};

The member functions StiffMat() and MassMat() for

calculating stiffness and mass matrices require certain
tools such as a numerical integration scheme, in addition
to the data defined in this class. These tools are embedded
within these functions in the present implementation
although they can also be abstracted out as objects. Some
functions such as calculating shape functions, their partial
derivatives, strain-displacement matrix, etc. are defined in
the corresponding element type classes. These data are
required by the functions StiffMat() and/or MassMat()
which provide some necessary information to
corresponding element type object and request it to
perform these operations. Method to determine load
vector for element is also implemented in a similar
manner.

Now, one ElementGroup class is defined which deals
with the lists of elements and performs several tasks
including assembly of element stiffness matrices and load
vectors, and solution of the system equations:

class ElementGroup : public LinkedList<Element> {
private:

/* . . . */
public:

ElementGroup(); // constructor
~ElementGroup(); // destructor
Element* operator[] (int who); // subscript operator to

// reference an element
void assembly(int loadcase); // assembly of stiffness

// matrices and load vectors
void SkySolve(int loadcase); // skyline reduction solution
void FrontSolve(int loadcase); // frontal solution
/* . . . */

};

Each of these tasks is decomposed into smaller tasks

performed by different procedures implemented in this
class.

F. Other Classes
Several other classes, in addition to those presented

above, need to be defined in a complete finite element
library. For example, a group of object classes are defined
that perform modal generation and results processing.

Engineering variables such as strains and stresses can
also be abstracted out. For example, a stress class is
defined to provide several facilities including
computation of principal stresses and their orientations,
von Mises stresses and stress transformations.

Several utility classes are also defined to manage the
finite element objects. The object oriented approach has
facilitated the natural extension of the code in
implementation of several other features. For example,
the code consists of some classes which perform
interpretation of FEM commands written in C language
syntax. The code also includes several inherent classes
for text editing facility which can be used for preparing
command file and also for making reasonably well
documentation related to the software [16].

As stated earlier, the above discussion on classes are

only representative and actual implementation differs
significantly. For example, in the original implementation
a class Elem3DStBrick8Lay defining three dimensional
eight noded structural layered brick element is virtually
inherited from multiple base classes each having own set
of base classes, as depicted in Figure 1.

Element

Element3D ElementSt

Figure 1. An example of inheritance of class Elem3DStBrick8Lay.

Elem3DBrick8 Elem3DSt ElemStLay

Elem3DStBrick8 Elem3DStLay

Elem3DStBrick8Lay

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 693

© 2010 ACADEMY PUBLISHER

V. FEM SOLUTION OF AN ENGINEERING
PROBLEM USING ‘FACS’

The present object-oriented FEM code ``FACS'' can be
used to solve a considerable range of general kinds of
engineering problems in the fields of structural analysis,
heat transfer and metal working. It is worthwhile here to
discuss the different steps and roles of different classes in
solving an engineering problem. In order to do so, an
example problem of foreign object impact on laminated
composite plate is considered which was solved in the
initial implementation of the code [15,21]. Problem
description is sketched in Figure 2. The steps required to
solve the problem using present object-oriented
implementation are briefly described below.

Figure 2. Problem description of transverse impact by a foreign object
on a rectangular laminated plate.

A. Discretization and Pre-Processing of Finite Element
Model

The element type is defined to be layered version of
eight-noded isoparametric brick element. This is done by
requesting object of ElemTypeGroup class which
dynamically creates an object of class
ElemType3DStB8Lay and inserts in the list of element
types. While the object is created, several characteristics
of the element such as number of nodes, number of nodal
degrees of freedom, etc. are also defined. Orthotropic
material properties are defined by requesting
MaterialGroup class which creates an object of class
MaterialOrtho and assign values of the material density,
elastic constants and strength values either using the
constructor or member functions of the material class.
The number of plies and orientation, thickness and
material property reference number of each ply in the
laminate are described using separate classes LayerData
and LayerDataGroup.

Solid modelling, mesh control and mesh generation are
performed using appropriate classes such as Keypoint and
KeypointGroup, Line and LineGroup, Area and
AreaGroup and Volume and VolumeGroup. While
meshing, a number of nodal points are established which
are created once the solid model objects request object of
class NodeGroup to do so. The coordinates, etc. are
assigned to each nodal point during the process. Similarly
elements are defined by object of class ElementGroup
which creates objects of class Elem3DStBrick8Lay based
on the element type currently set and arranges them in a

list. The data input to each element include the element
type reference number, material reference number and
element connectivity. Plies within an element are
automatically defined using the coordinates of its nodal
points.

B. Boundary Conditions and Loading
Degree of freedom constraints are applied either on

nodes, keypoints, lines or areas using the member
functions defined in these classes. Concentrated forces
are specified at either keypoints or nodes. Surface loads
are specified on lines and areas or on nodes and element
faces. If loads are specified on the solid model, the node
and element classes request the solid model objects for
load data and transform these data to the equivalent nodal
and element loads using appropriate numerical
algorithms. For transient dynamic analysis of structures,
several data such as time-step, number of load steps, etc.
are defined within the class ElementGroup.

C. Computation of Element Properties
Finite element transient dynamic equilibrium equation

for structural analysis can be derived using Hamilton’s
variational principle. The equation for the case of no
damping can be written as

[]{ } []{ } { }M U K U F+ =&& , (1)

where []M and []K are structural mass and stiffness

matrices, { }U and { }U&& are the nodal displacement and

acceleration vectors and { }F is the applied load vector.

These can be calculated as [] []e
e

M m= ∑ , [] []e
e

K k= ∑

and { } { } { } { }b se e
e e

cF f f= + + F∑ ∑ , (2)

where []ek is the element stiffness matrix, []em is the

element stiffness matrix, { }b e
f is the element body force

vector, { }s e
f is the element traction force vector and

{ }cF is the global concentrated force vector.
The above finite element equation is integrated step-

by-step with respect to time using Newmark direct
integration method with constant average acceleration
(α = 0.5 and β = 0.25). After applying this method, Eqn
(1) can be evaluated at time to form [15]: 1nt +

{ } { }1
ˆ

n nK U F+
⎡ ⎤ =⎣ ⎦ 1

ˆ
+ (3)

Where K̂⎡ ⎤⎣ ⎦ is effective stiffness matrix and { }1n̂F + is

the effective load vector defined as,

[]
()

[]2

1K̂ K M
tβ

⎡ ⎤ = +⎣ ⎦ ∆
 and

{ } { } []
()

{ } (){ } { }1 1 2

1 1 1 2ˆ
2n n n n nF F M U U U

tt
β

β ββ
+ +

⎛ ⎞−⎜ ⎟= + + +
⎜ ⎟∆∆⎝ ⎠

& && . (4)

For each element e, the element stiffness matrix []ek

and mass matrix []em are calculated by member
functions StiffMat() and MassMat() defined in class

c

a

b

MASS, m
NOSE RADIUS, rI

CONTACT VELOCITY, V0

X1

X2

X3

694 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

Elem3DStBrick8Lay. This class also consists of functions
to calculate the effective element stiffness matrix ˆ

e
k⎡ ⎤
⎣ ⎦

and the effective element load vector . Here

 contains element surface force vector and

element body force vector which are computed using
separate functions implemented in this class or its base
classes.

1n̂ e
f +

⎡ ⎤
⎣ ⎦

1n̂ e
f +

⎡ ⎤
⎣ ⎦

D. Assemblage of Elements and Solution of Equilibrium
Equations

The effective element stiffness matrices and load
vectors are assembled to constitute the effective global
stiffness matrix K̂⎡ ⎤⎣ ⎦ and effective global load vector

. The function assembly() defined in the class

ElementGroup gets the stiffness matrix and load vector
from each element and assembles them in skyline vector
storage mode. This compacted storage is used by the
skyline reduction solution method SkySolve() to solve the
system of equations. Another solution scheme called
frontal solution method is implemented by function
FrontSolve(). However, the complete assembly of all
element contributions is not required in case of frontal
solution method (FrontSolve()) in which assembly and
reduction of equations are performed at the same time.
Solution of the system of equations using any of two
methods determines the global displacement vector

 at (n+1)th time-step.

{ 1n̂F + }

}

} }

{ 1nU +

Since the contact force at the impact point is not
known at the beginning of each time-step, a Newton-
Raphson iterative method is used to implement a non-
linear contact law in the analysis. The contact force is
calculated using a function defined within the class
NodeGroup and its value is assigned to the nodal point at
the impact point. Once the global displacement vector

 is known, the velocity vector { and

acceleration vector {
{ 1nU + 1nU +

&

}1nU +
&& are computed within the class

NodeGroup. This procedure is repeated for each time-
step.

Results of contact force and centre displacement are
presented in Figure 2 for a test case of [904/08/904]
graphite-epoxy square plate of size 100 mm having
clamped edges and impacted by a steel mass of 200 gm
traveling at 5 ms-1.

E. Computation of Stresses and Post-Processing of
Results

Once the displacements are known, element strains and
stresses within each ply in the element are calculated
using the member functions defined in the
Elem3DStBrick8Lay class or its base classes. Failure
criteria for prediction of matrix cracking and
delamination are implemented in separate functions
within the class. Result on prediction of impact-induced
delamination for the above test case, as obtained directly
by post-processor classes of the code, is plotted in Figure

3. The result depicts strength ratio, ed (calculated based
on impact-induced delamination criterion [22]) in the
bottom 0/90 plies interface of [904/08/904] graphite-epoxy
laminated square plate of size 100 mm which is having
clamped edges and impacted by 200 gm mass at a
velocity of 5 ms-1. The region, where is greater than
or equal to unity at the end of the impact, gives the
estimation of the delamination size [22].

de

0 400 800 1200 1600 2000
0.0

0.5

1.0

1.5

2.0

2.5

 Contact Force
 Displacement

Time (t), µs

C
on

ta
ct

 F
or

ce
 (F

c),
kN

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

D
isplacem

ent (w
), m

m

Figure 2. Contact force and centre displacement in graphite/epoxy plate
([904/08/904]) (dimension: a = b = 100 mm), having clamped edges and
impacted by blunt-ended steel cylinder of nose radius 5 mm and mass
200 gm having initial velocity of 5 ms-1.

Figure 3. Maximum strength ratio, ed and predicted delamination size at
0/90 interface of [904/08/904] graphite-epoxy square plate of size 100
mm having clamped edges and impacted by 200 gm mass at a velocity

of 5 ms-1 (values: A = 0.2, B = 0.5, C = 1.0). de

VI. DISCUSSION AND CONCLUSION

Finite element application programs are significantly
large and complex, and therefore, key issues in
developing these codes are easy testing, maintenance,
extension and reusability. Object-oriented programming
can provide stronger support to these desirable features
than traditional programming. It concentrates on
modelling the real world aspects of the system.

In object-oriented design, the approach used is to
identify and implement a library of finite element data

JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010 695

© 2010 ACADEMY PUBLISHER

types or classes that corresponds to high-level concepts in
engineering and mathematics. Each class has well-
defined roles and interfaces and therefore can be
developed, validated and maintained independently. The
use of data abstraction promotes the modularity of the
finite element program and permits efficiency concerns to
be more easily addressed at the implementation level of
each class. It also makes complex data structures more
convenient to use because the complexity is hidden by the
abstract operators of the class. The concept of inheritance
enables efficient and natural usability of finite element
codes. Several new facilities such as new element types,
materials and solution techniques may be incorporated
with much reduced effort. The programmer may also be
able to make use of existing code which may continue to
run in the new system.

The present one is a kind of implementation of object-
oriented approach to the design of FEM system. Concepts
of object-oriented programming and some of the sample
finite element classes implemented in the present
software “FACS” have been briefly discussed. C++ was
used in the development of the program because it has
several features to support object-oriented programming.
This language also provides hybrid object-oriented
environment which allows the programmer to define
objects, but also contains intrinsic data types that are not
objects. The paper also discussed the role of different
classes and their interfaces in solving a practical
engineering problem using FEM.

Inspite of a number of advantages of object-oriented
programming, special care must be taken to preserve the
computational efficiency of the numerical algorithms. In
order to do so, a hybrid implementation can be used at
those places in the code which are computationally
intensive and are required during the solution phase of the
analysis. The static member function concept and other
facilities in C++ such as use of this pointer allow the
developer to implement a hybrid approach wherever
required.

The general conclusion is that use of object-oriented
programming with C++ is attractive for the development
of finite element application programs.

REFERENCES

[1] G. R. Miller, “An Object-Oriented Approach to Structural
Analysis and Design”, Comput. Struct., vol. 40, pp. 75-82,
1991.

[2] T. Zimmermann T, Y. Dubois-Pelerin and P. Bomme,
“Object-oriented finite element programming. I. Governing
principles”, Comput. Meth. Appl. Mech. Eng., vol. 98, pp.
291–303, 1992.

[3] X.A. Kong, “Data design approach for object-oriented
FEM programs”, Comput. Struct., vol. 61, pp. 503-513,
1996.

[4] S. Y. Huang, S. Nakai, H. Katukura, and M. C. Natori, "An
Object-Oriented Architecture for a Finite Element Method
Knowledge-Based System”, Int. J. Numer. Meth. Engng.,
vol. 39, pp. 3497-3517, 1996.

[5] T. Zimmermann, P. Bomme, D. Eyheramendy, L. Vernier
and S. Commend, “Aspects of an object-oriented finite
element environment”, Comput. Struct., vol. 68, pp. 1-16,
1998.

[6] G.C. Archer, G. Fenves and C. Thewalt, “A new object-
oriented finite element analysis program architecture”,
Comput. Struct., vol. 70, pp. 63-75, 1999.

[7] L. Yu and A.V. Kumar, “An object-oriented modular
framework for implementing the finite element method”,
Comput. Struct., vol. 79, pp. 919-928, 2001.

[8] R.I. Mackie, “Object oriented implementation of
distributed finite element analysis in .NET”, Adv. Eng.
Software, vol. 38, pp. 726–737, 2007.

[9] B.C.P. Heng and R.I. Mackie, “Using design patterns in
object-oriented finite element programming”, Comput.
Struct., vol. 87, pp. 952–961, 2009.

[10] S.M.R. Tabatabai, “Object-oriented finite element-based
design and progressive steel weight minimization”, Finite
Elem. Anal. Des., vol. 39, pp. 55–76, 2002.

[11] O. Pantale, “An object-oriented programming of an
explicit dynamics code: application to impact simulation”,
Adv. Eng. Software, vol. 33, pp. 297–306, 2002.

[12] V. Kromer, F. Dufossé, M. Gueurya, “On the
implementation of object-oriented philosophy for the
design of a finite element code dedicated to multibody
systems”, Finite Elem. Anal. Des., vol. 41, pp. 493–520,
2005.

[13] J.R.Q. Franco, F.B. Barros, F.P. Malard and A. Balabram,
“Object oriented programming applied to a finite element
technique for the limit analysis of axisymmetrical pressure
vessels”, Adv. Eng. Software, vol. 37, pp. 195–204, 2006.

[14] J. Mackerle, “Object-oriented programming in FEM and
BEM: a bibliography (1990–2003)”, Adv. Eng. Software,
vol. 35, pp. 325–336, 2004.

[15] S. Kumar, Finite element analysis of impact-induced
deformations, stresses and damages in composite
laminates. Ph.D. thesis. Indian Institute of Technology,
Kharagpur, 1998.

[16] FACS software, URL: http://www.facssoft.com.
[17] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing

Object-Oriented Software, Prentice Hall, Englewood
Cliffs, N.J., 1990.

[18] I. Graham, Object Oriented Methods, Addison-Wesley,
Reading, MA, 1991.

[19] G. Booch, Object-Oriented Design with Applications, The
Benjamin/Cummings, Menk Park, CA, 1991.

[20] B. Stroustrup, The C++ Programming Language,
Addison-Wesley, Reading, MA, 2nd ed., 1991.

[21] B. Pradhan, and S. Kumar, “Finite Element Analysis of
Low-Velocity Impact Damage in Composite Laminates”,
J. Reinf. Plast. Comp., Vol. 19, pp. 322–339, 2000.

[22] H.Y. Choi and F.K. Chang. “A model for predicting
damage in graphite/epoxy laminated composites from low-
velocity point impact”, J. Compos. Mater., vol. 26, pp.
2134-2169, 1992.

Surendra Kumar is currently a senior
scientist at CSIR Centre for
Mathematical Modelling and Computer
Simulation, Bangalore; which is a
constituent laboratory of Council of
Scientific and Industrial Research, India.
He is a Ph.D. in mechanical engineering
from Indian Institute of Technology,
Kharagpur. He has about thirteen years of

job experience in research and teaching. His major fields of
interest include Computational Mechanics of Materials, Finite
Element Method, Metal Working Processes and Software
Development.

696 JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

http://www.facssoft.com/

